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Abstract 

A topological index, which is often referred to as a 

connectivity index, is a molecular structure 

descriptor that describes the topology of a chemical 

molecule based on its molecular network. Different 

topological indices are divided into groups 

according to their degree, spectrum, and distance. 

In this investigation, we computed and examined 

degree-based topological indices, including the 

positive and negative arithmetic-geometric indices ( 

and ). Index) and index in regular graphs, complete 

graphs, complete bipartite graphs, union of graphs, 

and join of graphs are further examined and 

derived. Provide examples to further clarify the 

theory 

Keywords: Graphs, arithmetic-geometric index, and 

topological index. 

 

 
 

 

 

1. INTRODUCTION 

A signed graph is defined by an ordered pair ( ),G=  where ),( EVG =  is an 

underlying graph of  and  −+→ ,:E  is a function called a signature function. 

The positive degree of the vertex u  in the signed graph is defined by number of 

positive edges are incident in the vertex u  and it is denoted by ( )ud + .The negative degree of 

the vertex u  in the signed graph is defined by number of negative edges are incident in the 

vertex u and it is denoted by ( )ud − . 

The maximum positive degree of the signed graph  is maximum positive degree 

along the vertices in  it is denoted by ( )G+ . The maximum negative degree of the signed 

graph  is maximum negative degree along the vertices in  it is denoted by ( )G− .  

Note that the sum of positive degree and negative degree of a vertex in u is the 

degree of vertex in underlying graph ),( EVG = . 

The positive degree of the edge uv  in the signed graph is defined by number of 

positive edges are adjacent to the edge uv  and it is denoted by ( )uvd+ .The negative degree of 
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the edge uv  in the signed graph is defined by number of negative edges are adjacent to the 

edge uv  and it is denoted by ( )uvd− . 

The minimum positive degree of the signed graph  is minimum positive degree 

along the edges in  it is denoted by ( )GE+ . The minimum negative degree of the signed 

graph  is minimum negative degree along the edges in  it is denoted by ( )GE− . 

Defined in terms of the degrees of the vertices of a graph, degree-based topological 

indices are one of the most researched classes of topological indices used in mathematical 

chemistry. The definition of such a topological index may be expressed as follows: 

( )


=
Gpq

qdpdFGTI )(),()(  

Arithmetic-geometric index is defined as  
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We define the Arithmetic-geometric index of signed graphs in this study. We also 

look at various limits and characteristics of the signed graph's arithmetic-geometric index. 

 

2. ARITHMETIC-GEOMETRIC INDEX IN SIGNED GRAPHS 

 

The positive and negative AG index in signed graphs are defined in this section, along 

with the index's characteristics and boundaries examined. 

Definition 2.1:  The positive Arithmetic-geometric (AG+) index of signed graphs is 

defined as 
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Definition 2.2:  The negative Arithmetic-geometric (AG-) index of signed graphs is 

defined as 
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Theorem 2.1:  In a positive K regular signed graph with n vertices, then the )( +AG  

index is 







+

2
)(

nK
AG  

Proof: Let  be a positive K regular signed graph with n vertices. Therefore we get 

.,)( =− ii veveryforKvd The positive Arithmetic-geometric (AG+) index of signed graphs 

is defined as 
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In a negative K regular signed graph with n vertices, there is minimum 








2

nK
edges 

in  . 
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Illustration 2.1:Positive 2-regular signed graph ),( G . 

 
Figure 2.1: Positive 2-regular signed graph ),( G . 

 In a positive 2-regular signed graph ),( G the positive degree of the every 

vertices in ),( G  is 2.. The order ),( G is 6)(,4)( === GSnO . The )( +AG  index) 







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2
4)(
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Theorem 2.2:  In a negative K regular signed graph with n vertices, then the )( −AG  

index is 




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
−
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Proof: Let  be a negative K regular signed graph with n vertices. Therefore we get 

.,)( =− ii veveryforKvd The negative Arithmetic-geometric (AG-) index of signed graphs 

is defined as  
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In a negative K regular signed graph with n vertices, there is minimum 








2

nK
edges 

in  . 
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Illustration 2.2:Negative 2-regular signed graph ),( G . 

 

Figure 2.2: Negative 2-regular signed graph ),( G . 

 In a negative 2-regular signed graph ),( G the negative degree of the every 

vertices in ),( G  is 2.. The order ),( G is 6)(,4)( === GSnO . The )( −AG  index) 
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Theorem 2.3: For a positive complete signed graph of n vertices, then the )(AG index
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Proof: Let ),( G  be a positive complete signed graph this implies the induced sub 

graph  +V is a complete graph of order nGO =)( . This implies the positive degree of every 

vertices in G is (n-1) and n number of vertices in the induced subgraph  +V . In a (n-1) 

regular graph there is 
( )

2

1−nn
edges in a complete graph of n vertices. The positive 

Arithmetic-geometric (AG+) index of signed graphs is defined as  
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Illustration 2.3:Positive complete signed graph ),( G . 
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Figure 2.3: Positive complete signed graph ),( G . 
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Theorem 2.3: For a negative complete signed graph of n vertices, then the )( −AG
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Illustration 2.4:Negative complete signed graph ),( G . 
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Figure 2.4: Negative complete signed graph ),( G . 
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Theorem 2.5:For a positive complete bipartite signed graph nmK , , then the )( +AG

index ( ) .
2

1
)( mnmnAG ++

 

Proof: Let ),( G be a positive complete bipartite signed graph of vertex sets
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nm VV & respectively .This implies the induced sub graph  +

nmV ,
 is a positive complete 

bipartite graph of vertex sets nm VV & . This implies the positive degree of every vertices in 

mV and nV are mn &  respectively such that mii Vvnvd =+ ,)( and njj Vvmvd =+ ,)(

,there is mnedges in a positive complete bipartite signed graph nmK ,  of ),( nm  vertices. 
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Illustration 2.5:Positive complete bipartite signed graph ),( G . 
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Figure 2.5: Positive complete bipartite signed graph ),( G . 

In a positive complete bipartite signed graph ),( G the positive degree of the every 

vertices in 
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1V and 
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2V are m=4 and n=3 respectively. The order ),( G is 7)( =O . There is 
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Theorem 2.6:For a negative complete bipartite signed graph nmK , , then the )( −AG

index ( ) .
2

1
)( mnmnAG +−

 

Proof: Let ),( G be a negative complete bipartite signed graph of vertex sets 

−−

nm VV & respectively .This implies the induced sub graph  =

nmV ,  is a negative complete 

bipartite graph of vertex sets nm VV & . This implies the negative degree of every vertices in 

mV and  nV are mn &  respectively such that mii Vvnvd =− ,)( and .,)( njj Vvmvd =−

clearly there is mnedges in a negative complete bipartite signed graph nmK ,  of ),( nm  

vertices. Therefore )( −AG index 
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Illustration 2.6:Negative complete bipartite signed graph ),( G . 

 
Figure 2.6: Negative complete bipartite signed graph ),( G . 
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In a Negative complete bipartite signed graph ),( G the Negative degree of the 

every vertices in 
+

1V and 
+

2V are m=4 and n=3 respectively. The order ),( G is 7)( =O . 

There is 12 edges in Negative complete bipartite signed graph ),( G . The )( +AG  index) 

( ) mnmnAG +=−

2

1
37)( . 

3. Conclusion 

 In this investigation, we computed and examined degree-based topological 

indices, including the positive and negative arithmetic-geometric indices ( and ). Index) and 

index in regular graphs, complete graphs, complete bipartite graphs, union of graphs, and join 

of graphs are further examined and derived. Provide examples to further clarify the theory. 

We shall examine the many degree-based topological indices in the future. 
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